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``Magic Relation'' Between the Structures of
Coexisting Phases at a First-Order Phase Transition
in a Hard Sphere System
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Received August 6, 1999; final October 14, 1999

In the statistical geometry of a hard sphere system of any number of dimen-
sions, Vo and So , the so-called available space and the area of the interface
between the available and unavailable space, respectively, can be used as sur-
rogates for chemical potential and pressure. It is shown exactly that, if a first-
order transition occurs, the relation dVo �dSo=&_�2D, where _ is the diameter
of a sphere and D is the dimensionality of the system, must hold for densities
in the phase coexistence region. This relation is remarkable in that &_�2D is the
ratio of the volume to the surface area of a sphere. Also, it is shown that it is
possible for the system to have two successive first-order transitions, but that
the occurrence of a continuous transition (even in two dimensions) is unlikely.
It is argued that this unlikelihood is substantially strengthened by the absence
of temperature (except as a trivial factor) as a variable in hard-sphere systems.
This suggests that the findings of the KTHNY theory, recent simulations, and
colloid experiments (specialized to ``sticky'' hard disks) can be extended to true
hard disks. The fundamental physics underlying the ``magic relation'' is yet to be
exposed. The author continues to search for the underlying reason and hopes
that the present paper will stimulate others to join the search.

KEY WORDS: Hard spheres; statistical geometry; available space; cavities;
phase transitions.

1. SOME STATISTICAL GEOMETRICAL FORMULAS

It has been known for some time that, for hard particle systems, the
available space Vo and the area of the interface So separating the available
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from the unavailable space, quantities defined in statistical geometry, (2) can
be used in statistical thermodynamic analyses as surrogates for the chemi-
cal potential and pressure. Vo is the possibly multiply connected volume
within the system at which the center of an additional hard particle may be
placed and is closely connected to the well known insertion probability(3�5)

while So is the area of the complex extended interface separating Vo from
the remaining volume of the system. Both Vo and So are ``average'' quan-
tities but, in the thermodynamic limit, the following relations have been
shown to be exact.(6�10)
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In these equations + is the chemical potential, P is the pressure of the
system, F is the Helmholtz free energy of the system, k is the Boltzmann
constant, T is the temperature, 4 is the thermal de Broglie wavelength of
a particle, N is the number of particles in the system, V is the volume of
the system, _ is the diameter of a particle, and D is the dimensionality of
the system. Eqs. (1) and (2) are the basis for the statement that So and Vo

can be used as surrogates for + and P.
In spite of the beautiful simplicity of these equations, workers have

apparently not yet been able to exploit them as fully as might be expected
upon first sight. There is of course the successful use of the ``insertion prob-
ability,'' embodied in Eq. (1), in simulation and in theory (for example in
scaled particle theory(6, 11)) as well as in the demonstration that the free
volume equation of state holds in the limit of high density(12�15)), but the
geometrical and structural intuition, implicit in the equations, has certainly
not been yet been fully utilized. There has been some tentative applica-
tion(16) in an attempt to estimate the density at which a freezing transition
should occur, but even this approach has not been fully developed. In addi-
tion, there has been a partially successful effort to show that the equations
can be derived for a lattice system.(17) One might conclude because of this
limited progress, that the equations are ``pretty'' but not very useful. In the
present author's opinion, however, the final returns on this issue are not yet
in, and in this paper we will present still another incarnation of the equa-
tions that seems remarkable enough to be dubbed a ``magic relation.''
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2. THE MAGIC RELATION

We now consider the ``hard sphere'' fluid-solid phase transition.(18) In
order to proceed we will introduce a simple expansion of notation, append-
ing a subscript f to quantities referring to the fluid and a subscript s to
those referring to the solid. The only variable of significance in the hard
sphere system is the density \=N�V, and we will assume that the system
undergoes a first-order transition such that the fluid freezes at a density \f

and melts at \s where \s{\f . Between these densities the fluid and solid
phases coexist. It is simplest to hold V fixed and to vary \ by varying N.
Then, for N=Nf and N=Ns we have

+f=+s (4)

and

Pf=Ps (5)

Substitution of Eqs. (1) and (2) into these equations yields

Vos

Vof
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N f
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and
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Eq. (7) can be rearranged into the form

NfSof

Vof

&
NsSos

Vos

=
2D
_

(Ns&N f)>0 (8)

The inequalities in Eqs. (6) and (8) follow from the fact that the density of
the solid exceeds that of the fluid. Thus, since Vos>Vof , Vo increases
during the transit of the coexistence region. Substitution of the equality in
Eq. (6) into Eq. (8) yields

Sof>Sos (10)

Thus, whereas Vo increases during the transition, So decreases. These
various exact results have been derived previously, (10) and they are presented
in order to set the stage for the derivation of the new result, Eq. (11) below.
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Substitution of the equality in Eq. (6) into Eq. (7) yields the exact
result

Vos&Vof

Sos&Sof

=&
_

2D
(11)

This is the ``magic relation.'' It was derived by the author several years ago,
but never published, although discussed with various colleagues. The for-
mula is remarkable on several counts. Before proceeding to explore these
features, we again stress the fact that the derivation of Eq. (11) is based on
the assumption that the system does undergo a first-order transition. Thus,
the magic relation is an exact, necessary consequence of the occurrence of
such a transition. As such, it represents a sensitive test for the first-order
nature of a transition. On the other hand, it is not a sufficient condition for
the occurrence of a transition. Having made this point, it is appropriate to
emphasize the fact that the relation does not contain the density explicitly,
i.e. it does not contain N, Nf , Ns . We return to this point later.

In one sense, Eq. (11), being only a single condition, is not as restric-
tive as the combination of the two conditions, Eqs. (4) and (5). However,
in a structural and geometric sense it is quite restrictive, and raises the
question as to what pair of average fluid and solid structures can satisfy it.

3. MORE ABOUT THE RELATION

If N lies in the phase coexistence range, it follows quite simply (as a
lever rule) that

Vo=\Ns&N
Ns&Nf+ Vof+\N&Nf

Ns&Nf+ Vos (12)

and

So=\Ns&N
Ns&N f+ Sof+\N&N f

Ns&Nf+ Sos (13)

Differentiating both of these equations with respect to N, and taking the
ratio of the results, gives

dVo

dSo

=
Vos&Vof

Sos&Sof

=&
_

2D
(14)

Where the second equality is simply Eq. (11). This equation is a more com-
pact form of the magic relation. Thus, in the coexistence region, the
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derivative of the total available space with respect to the total interface
area is a negative constant equal to &_�2D. That constant which also
appears in Eq. (11), is just the negative of the ratio of the volume to the
surface area of a hard sphere.

The fundamental reason for this is, at present, unclear, but the follow-
ing feature may be related to it. For simplicity, consider a three dimen-
sional system. The actual volume in the system not covered by spheres, at
any value of N, is

V� o=V&
?_3N

6
(15)

and the total surface area of the spheres is

S� o=?_2N (16)

Since N is the only variable in Eqs. (15) and (16), it follows that

dV� o

dS� o

=&
_
6

=&
_

2D
=\dVo

dSo+ coex

(17)

where the subscript ``coex'' indicates that the derivative refers only to values
of N in the coexistence range. In contrast, the derivative at the left
corresponds to any value of N. We have used the symbols V� o and S� o to
denote the geometric properties of the volume not covered by spheres, i.e.
symbols similar to those associated with the available space, because the
noncovered volume can be regarded as the available space for a single point
``solute'' in a ``solvent'' of hard spheres. Stillinger(19) has examined the
available space for solutes intermediate in size between a point and a
sphere of diameter _ and has shown that the magic relation does not apply
to these intermediate spheres. It is therefore limited to spheres having radii
equal to zero or _ only. This limitation is reasonable. The ratio in Eqs. (11)
or (16) has the dimension of length, and in the two extreme systems there
is only one fundamental length, namely _. Thus _ must appear on the right
side of Eq. (11) and in the middle of Eq. (17), and the only thing to be
explained is the coefficient, &1�2D. On the other hand, in an intermediate
system having a solute sphere larger than a point, there are two lengths
corresponding to the diameters of the solute and solvent, respectively.
Hence Eq. (17) need not apply. However, recently, Corti and Bowles(20, 21)

have derived the equivalent of Eq. (14) for mixtures of hard spheres
(including a mixture in which there is only one solute sphere) and have
shown that a similar relation can hold for such a mixture. However, in this
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case, the available space is a weighted sum of the available spaces of the
various components, and not merely the space available to the solute.

Now the changes in both V� o and S� o , upon the addition of a sphere,
depend only on the added sphere, and the ratio of these changes is in fact
constant. In the case of Vo and So , in the coexistence region, the addition
of a sphere will only induce additional freezing without altering the inten-
sive properties of the individual phases. The amount of additional freezing
will clearly be the same for each sphere that is added. Thus, the ratio of the
change in Vo to the change in So may be expected to remain constant, as
in the case of V� o and S� 0 , but the physical reason for its equaling &_�2D,
or at least the coefficient, &1�2D, remains to be understood. It should also
be noted that the minus sign in the magic relation for Vo and So is a result
of an increase in Vo and a decrease in So , upon the addition of a sphere,
whereas in the case of V� o and S� o the reverse is true; V� o decreases while S� o

increases!

4. CAN THE MAGIC RELATION BE SATISFIED?

Figure 1 constitutes one sort of graphic description of Eq. (17). It
exhibits a schematic plot of dVo �dSo versus N (i.e. versus density, since V
is constant) whose qualitative features are consistent with whatever precise
knowledge is available concerning Vo and So (at least for a 3 dimensional
system, so that it is most appropriate to consider the figure in terms of such
a system). We know that at low densities Vo decreases with increasing N
while So increases. Thus, at small N, the derivative is negative as in the
figure. Ultimately, as N is increased, Vo becomes multiply connected and
is contained in many isolated cavities. As N is increased further, a point
will be reached at which So will decrease while Vo will continue to
decrease. At this point, So will pass through a maximum so that the
derivative will pass through zero and exhibit positive values, again as in
Fig. 1. It can be proved exactly(2, 10) that the maximum must occur at den-
sities lower than those at which any first-order freezing transition occurs.
We can guess that the positive values of the derivative themselves pass
through a maximum as the density is increased, and this guess has been
incorporated into the plot in the figure. The guess is based on the assump-
tion that the cavities remain compact and roughly spherical as they become
smaller, so that the derivative will scale roughly as the decreasing average
radius of a cavity.(14, 15) When N reaches N f corresponding to the freezing
density (assuming that a first-order transition occurs), Eq. (17) must be
obeyed, and the derivative jumps discontinuously to the negative value,
&_�2D, as shown in the figure. It retains this negative constant value until
N reaches Ns , corresponding to the melting density, at which point it
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Fig. 1. Schematic plot of dVo �dSo versus N (at fixed V ) for a hard sphere system. The dis-
continuities appearing at the extremes of the coexistence region are demanded by the magic
relation together with the fact that the derivative must be positive at any density larger than
that at which the available space becomes distributed over compact cavities. It can be proved,
exactly, that the maximum in the derivative must occur at a density lower than that of a first-
order transition.

jumps discontinuously to a positive value characteristic of the solid. There-
after, assuming the cavities to be compact, it decreases toward zero at close
packing.

We have emphasized that Eqs. (11) and (17) do not depend explicitly on
density. At the same time, Vos and Sos as well as Vof and Sof depend
uniquely on Ns and N f (or densities), respectively, and in each phase they
have no knowledge of the density-independent magic relation which they
are supposed to satisfy. This raises the question of how that relation can be
satisfied. Even if it is satisfied, a phase transition is not assured unless
Eq. (6) is simultaneously satisfied. To gain some insight into this matter we
refer to Fig. 2. In this figure it is convenient to deal with the dimensionless
variables V� o=Vo�_D and S� o=So �_D&1, in terms of which Eq. (17) can be
expressed as

dS� o

dV� o

=&2D (18)

Figure 2 contains, as parts A, B, C, three different totally schematic sets of
plots of S� o versus V� o . (Note that these plots are almost entirely schematic
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Fig. 2. Various plots of S� o versus V� o . The straight line of negative slope corresponds to
Eq. (18), and the occurrence of a first-order phase transition requires that Eqs. (6) and (10)
be simultaneously satisfied by the points of intersection of the straight line with the curves for
the fluid and solid that appear in each part of the figure. On this basis, first-order transitions
are possible in parts B and C. In part C, conditions are such that two successive first-order
transitions are possible.

and presented only for the purpose of facilitating the associated discussion.
However, the curves do conform to the requirements that So and Vo vanish
at close packing while So vanishes at zero density while Vo becomes equal
to V.) A and B each contain a supposed plot for the fluid phase (solid line)
together with a supposed one for the solid phase (dashed line). Super-
imposed on these curves is a heavy solid straight line of slope, &2D,
representing a possible plot of Eq. (18). The intersections of this line with
the curves are represented by small shaded spheres. It should be
emphasized that, although the plots are schematic, in any actual case they
are determined by the physics of the system and in this sense they are
invariant and beyond our control.

First, consider part A. The curves for solid and liquid are denoted
respectively by S� os and S� of . In this case the curve for the solid lies above
that for the fluid. Note that points on the two curves corresponding to the
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same value of V� o will generally correspond to different densities. (Again,
density does not appear explicitly in the magic relation.) The straight line
of slope, &2D, can be translated, parallel to itself, over the two curves, and
it is clear that at any translated position, the points of intersection must
satisfy the magic relation, Eq. (18), since they lie on a line whose slope is
prescribed by that equation. The question then arises as to which position
of the straight line is the correct one. Normally, the correct position would
be determined by the need for the points of intersection to simultaneously
satisfy Eq. (6). But this can never be the case for the curves in part A of
the figure. Equation (6) can never be satisfied because it requires V� os>V� of ,
and in part A the point of intersection on the fluid curve has V� of greater
than V� os on the solid curve. It also has S� of less than S� os on the solid curve,
and this is a violation of Eq. (10). Note that V� o on the abscissa runs from
V corresponding to zero density to 0 corresponding to a close packed den-
sity. In part A, Eq. (6) cannot be satisfied because the curve for the solid
lies above that for the fluid. With such an arrangement the system cannot
have a first-order transition. This result provides a graphic example of our
earlier statement that satisfaction of the magic relation is a necessary but
not a sufficient condition for the existence of a first-order transition.

In part B of Fig. 2 the situation is reversed, and the fluid curve lies
above the solid curve. It is easy to see that, in this case, both Eqs. (6) and
(10), as well as the magic relation, Eq. (18), could now be satisfied
simultaneously. Of course, this is not guaranteed and the straight line
might be translated to a position like that of the dot-dash line, where it
fails to intersect either curve, without satisfying both Eqs. (6) and (10).
Everything depends on manner in which S� o and V� o depend on the density,
not explicitly shown in the figure. However, it is unlikely that a satisfactory
translation of the straight line will not be found, given the infinite con-
tinuum set of possible locations available to it.

Part C of Fig. 2 illustrates another situation. Here there are three cur-
ves respectively denoted by the subscripts of, os, and os', and represented
by solid, dashed and dotted lines. Those denoted by of and os may again
be regarded as belonging to a fluid and solid phase, respectively, while os'
designates a possible second nonfluid (solid) phase. Since the dotted curve
lies below the dashed one, it offers the possibility of a second first-order
phase transition as the density is increased. This is implied by the second
magic relation line that intersects the two curves to the left of the one that
intersects the solid and dashed curves. Thus the system might exhibit two
first-order transitions.

Now, phase transitions in 2-dimensional systems have been the subject
of intense scrutiny during the last two decades.(22�31) An important advance
in understanding took place with the development of the theory of

81``Magic Relation'' at a First-Order Phase Transition



Kosterlitz and Thouless, (23, 24) augmented by the modifications introduced
by Halperin, Nelson, and Young.(24�26) The theory is now identified by the
acronym KTHNY. The original work of Kosterlitz and Thouless focused
on the dissociation of vortices, but later work dealt with the dissociation of
dislocation pairs in an elastic solid to form disclinations and ultimately a
disordered fluid phase. The theory indicated that the melting of the 2-
dimensional solid involved two continuous phase transitions. Starting at a
high enough density so that the solid hexagonal phase with very long range
order, both positional and orientational, was stable, a decrease of density
was predicted to induce a phase transition (via dislocation pair dissocia-
tion) to a hexatic phase where only orientational order was very long
ranged. A further reduction in density predicts a second transition, driven
by the dissociation of individual dislocations into disclinations and results
in a fluid in which neither positional or orientational order is long ranged.
The two transitions are not only supposed to be continuous but are sup-
posed to lie close together on the density axis. It is important to indicate
that the argument loses currency for true hard disks, but should hold for
disks that have attached to them, a narrow attractive potential well.

Bladon and Frenkel(28) performed a convincing simulation, using disks
with narrow square wells (or with narrow potential steps), and argued that
their results make it highly plausible that both transitions are actually dis-
continuous and first-order. The KTHNY theory has been modified to
include this possibility. Furthermore, in a tour de force experiment involv-
ing micron size monodisperse polymethylmethacrylate (PMMA) spheres
confined in a narrow space between two plates, Marcus and Rice(31) seem
to have demonstrated the first-order nature of both transitions.

The question that remains concerns whether this scenario applies to
true hard disks, e.g. to disks that do not have narrow potential wells. The
analysis of the present paper is suggestive in this respect, and to proceed
further we consider the possibility of the occurrence of continuous transi-
tions. Figure 3 is relevant to this purpose. The two curves in the figure refer
to the solid and the fluid, and again we note that, although they are
schematic, they are determined by the system and are beyond our control.
On the right, the solid curve lies above the fluid one so that, in this inter-
val, there can be no first-order phase transition. On the left, beyond the
intersection, the situation is reversed and there could be a first-order transi-
tion. However, as we explain below, there could be a continuous transition
at the intersection so that a stable fluid phase would not exist beyond that
intersection.

That there could be a continuous transition at the point of intersection
follows from the fact that, at such a transition, �P��+=N�V=\ is con-
tinuous across the transition, (32) so that with V constant, N must be the
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Fig. 3. Plots of S� o versus V� o that allow a continuous transition, at the intersection between
the two curves, provided that, at the intersection, N is the same on the two curves.

same on either side of the transition. The simultaneous solution of Eqs. (1)
and (2), with N, +, and P the same, for the phases on either side of the
transition, shows that S� o and V� o must each be the same on either side, and
this is just the case at such a point. Note that, because there are no changes
in S� o and V� o , the derivative in Eq. (18) is indeterminate and the magic
relation is irrelevant.

Note also that the mere existence of the point of intersection does not
guarantee the occurrence of a continuous transition anymore than the
satisfaction of the magic relation alone, in Fig. 2B, guarantees a first-order
transition. There must also be a special relation between the N 's in the two
phases. In this case the two N 's must be equal. But now, presented by the
system with two intersecting curves, we do not have the freedom, as we had
with the magic relation in regard to the satisfaction of Eq. (6), of sliding
that intersection along the V� o axis until the N 's match. Put in another way,
the ``intersection'' requirement can only be satisfied at a single point
whereas the ``magic relation'' can be satisfied almost everywhere within the
range of the two curves. Thus the mathematical requirement has become
much less flexible and it might seem that a continuous transition is far less
likely.

However, when the argument of the last paragraph is considered from
the purely mathematical point of view, both types of transition are subject
to the same degree of restriction. This is because, for both types of transi-
tion, there are two mathematical steps or conditions that have to be
satisfied, and therefore it could be argued that either transition is subject
to the same level of restriction! In each case, a first step involves finding a
unique relation between the S� of and S� os curves. In the case of the first-order
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transition, this relation is simply the ``magic relation'' while, for the con-
tinuous transition it is the ``intersection'' of the curves. The second step
involves the satisfaction of a particular relation between the N 's in the pair
of curves. For the first-order transition, that relation is Eq (6) while, for the
continuous transition, it is the requirement that each member of the pair
have the same value of N at the intersection.

A difference in the degree of restriction, although not apparent when
the problem is considered from the mathematical point of view, is more evi-
dent when it is looked at from the physical point of view. Then we have to
consider the situation in terms of the pairs of particle configurations that
represent the two phases between which a transition takes place. In the
case of a first-order transition, the ``magic relation'' can be satisfied over an
extensive range of V� o , or in other words, by a very large number of con-
figurational pairs. In contrast, in the case of a continuous transition, the
``intersection'' is limited to just one value of V� o . Furthermore, at this single
value of V� o , the pair of configurations must be such that each member
refers to the same value of N. The physical likelihood that a physical system
will have configurational pairs that submit to these conditions is not very
good. On the other hand, as has already been noted, there is an abundance
of configurational pairs that satisfy the magic relation. So, in the case of a
first-order transition, the system has a large number of pairs to choose
from in satisfying Eq. (6). Consequently, a first-order transition must be
regarded as considerably more likely than a continuous one. Indeed, on
this physical basis the occurrence of a continuous transition might be con-
sidered to be almost excluded.

This suggests that the findings of Bladon and Frenkel(28) and Marcus
and Rice(31) can be extended to true hard disk systems.

It has been brought to the author's attention(33) that a continuous
transition always requires more special conditions than a first-order one.
However, because of the absence of the temperature variable, the situation
is more compelling in the case of hard spheres. Up to now, the analysis in
this paper has been developed in terms of Vo and So , in the interest of
focussing on structural geometry. But is somewhat easier to make to make
the argument about the role of temperature if we return to +, P space. In
fact, since we want to feature the role of temperature, it is best to work in
a three dimensional +, P, N space (at constant V... so that, in effect, N
behaves like an intensive variable). Only two of these three intensive
variables is independent in a single component system, and in the case of
hard spheres in the subspace of + and P, only + or P is independent. In +,
P, N space, the behaviors of the two phases (each identified by a suitable
order parameter) between which a continuous transition is supposed to
take place could be represented by two parametric curves with say N as the

84 Reiss



parameter, and for a continuous transition to take place these curves will
have to intersect... or at least meet. With an additional degree of freedom,
e.g. temperature (not available to hard spheres) this improbable event
need not be so improbable. For example, when a supercritical fluid is
cooled to just below the critical temperature, the curves for the two phases
that result from the symmetry breaking have, in a sense, already met...
they are already together... metaphorically, they are nonidentical twins
of a common mother. It is therefore not hard to understand how
these ``siblings'' can be in contact and differ only at of some high order
derivative.

In contrast, it is hard to see, in the case of hard spheres, lacking the
temperature variable (so that no common ``mother'' exists), how two such
curves can get together, especially if they are not broadened into lines of
nonzero thickness by fluctuations (which of course will occur to a degree
in the vicinity of a transition). Thus one could argue that hard spheres con-
stitute a very special case because of the absence of the temperature
variable, and that for these systems in particular, a higher order transition
should be virtually impossible.

Recently Karnchanaphanurach, Lin, and Rice(34) have performed
additional experiments in the style of Marcus and Rice, (31) but have varied
the interaction potential between colloid particles. They still only find a
first-order transition (in this case only a single transition) and therefore
provide strong evidence that the character (even of the first-order transi-
tion) is sensitive to the potential.

In closing this section, it is appropriate to call attention to the fact
that none of the phase transition studies, theory or experiment, include an
awareness of the cavities that constitute the available space at the high den-
sities in question. Indeed, these cavities and the associated available space
form such a small part of the system (at high densities) that it is reasonable
to ignore them. On the other hand the available space is a ``thermometer''
for the equilibrium properties of the system, i.e. it is a ``weak probe,'' whose
behavior is subject to many known exact conditions, and for this reason
alone, it should not be ignored. In an experiment such as that of Marcus
and Rice, (31) both Vo and So are exceedingly small and would be very dif-
ficult to measure. On the other hand, at lower densities, e.g. in the fluid
phase, such measurements may be possible. These could be facilitated by
a beautiful technique recently devised by Sastry, Truskett, Debenedetti,
Torquato, and Stillinger.(35, 36) The measured Vo and So could be substituted
into the so-called geometric Gibbs equation (obtained by substituting Eqs.
(1) and (2) into dP=\d+), and the degree to which the Gibbs equation
was satisfied would constitute a measure of the hard sphere-like nature of
the PMMA spheres.
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5. CONCLUDING REMARKS

We can conclude this paper by emphasizing that the ``magic'' in the
magic relation lies not so much in the fact that the derivative in Eq. (14)
equals _ times a negative coefficient, but in that the coefficient is the
negative of the ratio of the volume of a hard sphere to its surface area. This
very special result must have a nontrivial significance, the understanding of
which could reveal much about the fundamental basis of the phase transi-
tion. The author will continue to search for this understanding, but he
hopes that this paper will stimulate others to join the search.
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